Red/Blue Filters in DWDM Systems

Keywords

Application, DWDM, Fiber optics, Filter, WDM

Summary

To reduce link insertion loss in high-channel count, DWDM systems, an additional component is added to the optical path. This additional component, called a "Red/Blue" filter, is used like a regular WDM. The difference lies in the wavelengths which are split.

Scenario

Customers are requesting DWDM modules, which include Red/Blue filters (or "bandsplitters").

Question

What is a Red/Blue filter, and how is it used?
Common

Notes/Answer

Like DWDM filters, the Red/Blue filter is a thin-film filter device. It is a three-port device. One port is called the "Common." The other two ports provide the conduit for

Reflected the two wavelength "bands." The two bands are the Blue ($\lambda<1543 \mathrm{~nm}$) and the Red ($\lambda>1547 \mathrm{~nm}$). One band goes thru the Reflected leg, and the other band goes thru the Pass leg. Note: the Reflected leg and the Pass leg must be designated either Red or Blue. The band, which requires the highest isolation, goes on the Pass leg.

The device may be used in several ways. The device can be used as a band combiner or a band splitter. As a combiner, the bands are combined in the filter and sent to the Common leg. Or, as a splitter, the both bands are fed from the Common leg, and split to the corresponding leg. Typically, however, the device is used as a two-way (i.e. bidirectional) WDM. One band is sent to the Common leg, while the other band is delivered from the Common leg. (see example diagram)

In a DWDM module, which uses a Red/Blue filter, a Mux may be combined with a Demux. For example, the Mux combines DWDM channels in the Red band, while the Demux separates DWDM channels in the Blue Band. Using a Red/Blue filter, one can combine the Red Transmit channels and the Blue Receive channels onto a single fiber.

